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Irrelevant Operators and Momentum-Shel l  
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The momentum-shell recursion relations of Nelson and Pelcovits for an n-vector 
model near two dimensions are reexamined. The renormalization of the infinite 
set of relevant and marginal operators present in the system is studied. Ambigu- 
ities obtained in the ensuing recursion relations are shown to involve irrelevant 
operators only, thus justifying the procedure of Nelson and Pelcovits. The cases 
of finite external field h and finite spin anisotropy g are both considered. 
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1. INTRODUCTION 

The critical behavior  of n -componen t  classical spin systems was studied by 
various authors (1-5) near two dimensions, using a spin-wave expansion 
originally due to Berezinskii and  Blank. (6) In  this me thod  the O(n)  symme-  
try of the starting Hamil tonian  is broken formally at the outset, and  the 
properties of the system under  renormalizat ion are studied. Nelson and  
Pelcovits (4) have employed the momentum-shel l  technique of Wilson and  
Kogu t  (7~ to construct  a simple and  physically appealing version of the 
theory, in which the Hamil tonian  flows are directly mapped  out, in ana logy 
with the procedure  employed near four dimensions. (7'8) The present case is 
more  complicated than the four-dimensional  one, however, due to the 
existence of arbitrary numbers  of relevant and  marginal  operators for 
d = 2. Indeed,  the spin field s ( x )  has dimension [s] = d / 2  - 1, so that 
terms in the Hamil tonian  containing high powers of s, which are irrelevant 
near four dimensions, are relevant (4) for d = 2. 
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When d ~< 4, the coefficient of the relevant term s 2 is adjusted by fixing 
the temperature, and the coefficients of the marginal operators (3.s) 2 and s 4 
are controlled by the renormalization procedure. Near two dimensions, on 
the other hand, the relevant terms s 2m are fixed by the constraint 

s2(x) = 1 (1.1) 

and one is left with the marginal term (0,s) 2. The fixed-spin condition (1.1) 
now imposes a nonlinear restriction on fluctuations of the field s(x), which 
makes a direct application of perturbation theory difficult. To circumvent 
this problem a spin-wave expansion is carried out, (6) by aligning the system 
along one of the spin components, o(x), and expanding in the transverse 
fluctuations of the ( n -  1) component vector 7r(x). The marginal term 
(3,s) 2 then gives rise to an infinite series generated by the constraint (1.1): 

(3.s) 2 = (0.~r) 2 + (2.0) 2 = (3~7r) 2 + (1 - 9r2)-lQr �9 3 j r )  2 (1.2) 

= (Sjr)  2 + (~r. 0 j r )  2 + qrz(vr �9 3.~r) 2 + . . -  (1.3) 

The O(n) symmetry of the original system is reflected in the fact that all the 
terms in (.1.3) have the same coefficient. 

In studying the renormalization group near two dimensions (1'3'4) one 
therefore has an infinite number of (marginal) terms in the effective 
Hamiltonian which are equally relevant. Nelson and Pelcovits (4) found 
recursion relations for the Hamiltonian 

t t=fd'%{(-1)[(Odr)Z+(o.a)2]+ ho)  (l.4a) 

=fd~x{(-1)[(O,,)a+(,.O,,)2+~2(~r.O,,)2+ ...] 
+ _ ~ 4 +  . . .  

by studying the renormalization of terms in (1.4b) containing two powers of 
rr, i.e., (0jr)  2 and ~r 2. It is natural to ask, however, whether the same results 
would be obtained if one examined the renormalization of the equally 
relevant quantities Or �9 0 ~ )  2 and ~r 4, for instance, or any of the other terms 
in (lAb). It turns out that for finite h different recursion relations are in 
fact obtained, depending on which quantities are examined, since the form 
of the Hamiltonian (1.4) and the fixed-spin constraint (1.1) are not pre- 
served under renormalization. 

In order to understand this particular multiplicity (which does not 
occur near d = 4) we have examined the irrelevant operators of the theory, 
which are generated by an expansion of the renormalized Hamiltonian (1.4) 
in the magnetic field h. To lowest order in h recursion relations are found 
which do not involve any irrelevant operators. These yield the correct 
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equation of state to order c. In order to calculate corrections to scaling one 
needs the leading (dimension four) irrelevant operators, which involve 
terms in h and h 2. 

The nonlinear recursion relations of Nelson and Pelcovits (4) corre- 
spond to the inclusion of an infinite set of irrelevant terms in the "lowest- 
order" Hamiltonian. The equation of state obtained from these recursion 
relations, as well as from the other possible renormalization schemes 
mentioned above, are also correct to lowest order in e. Corrections to 
scaling, on the other hand, will not be calculable in this way, due to the 
unsystematic treatment of irrelevant operators. 

In the presence of spin anisotropy the system crosses over from O(n) 
to O(1) (Ising), or O(n-  1) symmetry depending on the sign of the 
anisotropy. In the former case the new fixed point lies outside the range of 
validity of the e expansion, but in the latter case it remains at low 
temperature [T* = O(c) for n > 3]. It is then important  to find nonlinear 
recursion relations which correctly interpolate between the limits of small 
and large effective anisotropy. Once again, there are many  equivalent sets 
of recursion relations which accomplish this task, and those of Ref. 4 offer 
one such example. [A linearization about  the O(n) system, analogous to the 
one we carry out in the presence of a magnetic field, will of course not yield 
the full crossover.] 

Our study illuminates the considerable freedom which exists in the 
choice of renormalization group variables, especially near d = 2. The Ham-  
iltonian flows have topological significance, reflecting the relative stability 
of different fixed points, but their metric properties are largely dependent 
on arbitrary definitions. 

Section 2 discusses the O(n) model with and without a magnetic field, 
and Section 3 studies the case of spin anisotropy. In the Appendix we 
briefly discuss the evaluation of diagrams in the presence of a magnetic 
field or spin anisotropy, for terms involving derivative coupling. A fuller 
discussion will be presented elsewhere. (9~ 

2. THE n - V E C T O R  M O D E L  

2.1. Zero External Magnet ic  Field (h = 0) 

Our motivation and formalism are the same as in Ref. 4, and we 
refer the reader to that paper  for a more detailed discussion. [Unless 
otherwise noted, 3 we shall adopt  the same notation as in Ref. 4.] The O(n) 

3 Our changes in notation, with respect to Ref. 4, are as follows: we write H instead of H1, and 
drop the arrows on the vector fields such as ~. For finite anisotropy, we put g in the direction 
7/1 and keep 0 2 = 1 - 7/2, with 7/= (7/I, r Finally, we keep A explicit, i.e., we do not set 
A = 1 in evaluating diagrams. 
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model 

(2.1) 

with fixed-spin constraint 

 2(x) + o2(x) = 1 (2.2) 

can be transformed into a model for the ( n -  l)-component ~r field, by 
eliminating the scalar o. 

l } ( ~ r ' a J r ) 2 - - ~ l n ( l  ~r 2) 
+ 1 --~-5" - (2.3) 

where 

O=(2~)-afAdaq 
JO 

is the number of degrees of freedom per unit volume in the spherical 
Brillouin zone, and A is the upper wave number cutoff [in Eqs. (2.1)-(2.3) 
we only consider fields varying on wavelengths longer than A-1]. The last 
term in Eq. (2.3) reflects the fixed spin constraint (2.2). When (2.3) is 
expanded in ~r 2 one obtains an infinite set of terms of the form 
p~r2('n+l)/(m + 1) and T - l ~ 2 m ( ~  -" ~ ) 2 ,  (m = 0, 1,2 . . . ) with the same 
coefficients p and T - f ,  reflecting the O(n) symmetry of the starting model 
(2.1). 

The renormalization group transformation is now defined in the usual 
way (v'4) by integration of the degrees of freedom of ~r(q) in the shell 
A/b < q < A in momentum space, and rescaling of the field and wave 
vectors. Since the transformation involves the ~r field only, it is not obvious 
a priori that the Hamiltonian will retain the rotationally invariant form 
(2.1), especially for a system with finite cutoff A. 4 If the Hamiltonian does 
not retain the form (2.1), there is ambiguity in the definition of the 
renormalized temperature (or coupling constant) T'. 

Using the momentum-shell technique it is essentially impossible to 
check the symmetry of the renormalized Hamiltonian H '  to all orders in 7r 2, 
except in the limit n--> oe. In that case, the graphs in Fig. la can all be 

4 As shown in Ref. 3, for a theory with infinite cutoff, the existence of Ward identities ensures 
that the renormalized theory preserves the O(n) symmetry of the bare Hamihonian. 
However, in a theory with finite cutoff we do not know how to prove the Ward identities 
because the transformation law under rotation for aq and % is highly nonlocal. 
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(1} 2n~  0 + "u169 3 n  b-< + . . . . . . . . . .  n~<) + ~.< ~-< 

c )  ~ + 2 ', b - <  + 2 ', I - - <  + : , 

+ ,, ,t_< q- ' +2 'I 

Fig. 1. (a) The series of graphs which contribute to the renormalization of "-'~ 2m 2~m=0 r 
Or �9 3g~r) 2 in the case n ~ m.  The notation is the same as in Ref. 4. Solid lines are propagators, 
and slashes on lines indicate derivatives. Dashed lines separate pairs of spin with common  
indices. (b) and (c) represent graphs which contribute to the renormalization of d-point and 
6-point vertices, respectively. The net  contributions from these graphs to ~r2(SgTr) 2 and 
~rd(~r) 2 sum up to zero. 

evaluated, and H '  written in the form (2.3) with corrections containing four 
or more derivatives. 

where 

(7'. a 7') 2 ] 7,2) 
+ ~ - - ~ -  - �89 - 

, _ 7q,-- 

q' = bq 

= ba(1 

T' = b-~T(1 

e = d - 2  

nTlnb 
47 ) 

+ nTln_____bb27 ) 

+ o(04)} 
(2.4) 

(2.5) 
(2.6) 

(2.7) 

For finite n, the diagrams involving high powers of 7 are increasingly 
difficult to evaluate, so the form (2.3) must be inferred from the first few 
orders. For instance, if we calculate the renormalized temperature T' by 
comparing the coefficients of (0j r )  2 and ( 7 . 3 , 7 )  2 as in Ref. 4, 5 we find 

( n - l T l n b  ) (2.10) a 1 -4-g 

T'= b-'T(1 n_2__~- 2 T lnb )  (2.11) 

S The cancellation shown in the top line of Fig. 2c of Ref. 4 is incorrect. The correct 
cancellation requires the slash on the lower left-hand external leg of the second graph to be 
on the lower right-hand external leg. 

(2.8) 

(2.9) 
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~  ' 
+ - ~ + = 0  

bl ~ b "r I 
< + T ~_~+~>- - -< :o  

c/ ,~< "#-rV i,'U--~, . ' ;  
< + ~ "  }-'< +-'3@____~ + ~ - < = 0  

+ ~ + >-" ~-<+_ , • 4/~___ @+ 4~ "<:0 

Fig. 2. The cancellations shown in parts (a)-(d) refer to the derivative4ree terms in Eq. (2.3), 
of order ~r 2, ~r 4, ~r 6, and ~r 8, respectively. These cancellations lead to the preservation of the 
fixed-spin condition. The dots on the solid lines refer to vertices involving p. 

which generalizes (2.7) and (2.8). A nontrivial check that H '  really has the 
form (2.3) is obtained by calculating the coefficients of the terms such as 
~r2(0,~r) 2 or ~r4(0jr) 2, which are absent from (2.3). These are represented by 
the diagrams in Figs. lb and lc respectively, and turn out to vanish. O) In 
addition the derivative-free terms in (2.5), examined to order Tr a, are 
consistent (9) with the function - �89 - ~r 2) appearing in (2.3) (see Fig. 
2). From the above information we are led to the inference that similar 
behavior will persist to all orders in ~r, and that the form (2.3) is preserved 
for finite n also. The terms left out contain at least four derivatives and are 
irrelevant for the same reasons as near d = 4. (7) 

2.2. The Case h ~ 0 

Let us add the term ho/T to (2.1), i.e., consider the Hamiltonian 

+ 

--21 pin(1 - rr 2) + Th (1 - '7/2) 1/2 (2.12) 

If we repeat the calculation of the previous section we now find that the 
renormalized Hamiltonian is not consistent with the starting form (2.12). 
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Indeed, the renormalization of (0,~r) 2 is different from that of (~r �9 3,7r) 2 by 
h-dependent terms, and there are new terms generated of the form 
7r2'~(Osr) 2, which were not present earlier. There is thus some ambiguity in 
the parametrization of the renormalized Hamiltonian. 

We shall follow the field-theoretic discussion (2'3) and order the terms 
generated according to their scaling dimension. (The magnetic field h has 
dimension two for d --- 2, and the spin field as well as the temperature T are 
dimensionless.) A detailed calculation (9) shows that no additional dimen- 
sion two operators are generated by the renormalization, other than those 
present in (2.12). We then identify the renormalized temperature T '  from 
the coefficient of the term [(0sr)2 + (1 - ~r2) - l(~r- 3,~r)2], and the renormal- 
ized field from the coefficient of o 1 -  �89 2 -  ]~r4+ . . .  . From this 
identification it follows (9) that Eq. (2.11) is unchanged, whereas h' satisfies 

h' _ h ~ (2.13) 
T' T 

where ~" is given by (2.10) as before. All the other terms generated involve 
higher powers of h and higher gradients. The operators of dimension four 
contain either h 2, h0~ or 0 4 with arbitrary powers of the field ~r. Our 
calculation (9~ shows that these are consistent with the form 6 

I' ) [ a ( 4 ) ]  ' ~'~" f ddx E )k/(4)6)~ 4) 
i=1  

(2.14) 

where 6)1, 6)2, and O 3 are terms with four derivatives, (3) and 

6)4 = o - l ( h  "4- V2Or)[(Ott~) 2 2t'- ( ~ 0 " )  2] (2.15) 

6) 5 = a - 2 ( h  + V2o) 2 (2.16) 

It was shown in Ref. 3, using nonlinear Ward identities that the five 
operators | . . . . .  0 5 are the complete set of irrelevant operators of dimen- 
sion four. (The physical significance of these irrelevant operators was 
discussed recently by Amit et al. (l~ .) Our calculation verifies (2.14), in that 
we calculate its expansion in qr and check the first few (nontrivial) orders. O) 

6 In the systematic study of irrelevant operators, it is useful to carry out the renormalization in 
a f inite-momentum shell A >1 q >1 A/b. The irrelevant operators are singled out by their 
cutoff dependence which is different from that of the relevant operators. This distinction is 
lost if one uses an infinitesimal shell of unit radius as was done in Ref. 4. 
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The full renormalized Hamiltonian can thus be written in the form 

H'  = H'  + Hir (2.17a) 

; { / ' t f  + H ' =  ddx ~ ( 0 f.a.)2 (Tr" [}/z gg) 2 
1 

h' - ~ ln(1  - vr 2) + T (1 - ~r2) 1/2 (2.17b) 

I Pm 
"--i'r = fddx  k ~a Xi(2"O0~ 2m) ) (2.17c) 

m=2i=l ) 

where O~ 2m) is an irrelevant operator of dimension 2m (p,, is the number of 
such operators at order 2m). The irrelevant operators control corrections to 
scaling, but not the leading scaling functions. To see this, we write down 
the differential recursion relations for dimension two operators [cf. Eqs. 
(2.10), (2.11), (2.13)1, 

9 '  - 2)  dT _ r + - -  T2(/) (2.18) 
dl 2~r 

(n  - 3)  
dh = 2h ( l )  + - -  h ( t )  T( l )  (2.19) 
dl 4~r 

These are the linearized forms of the corresponding equations (2.16) of 
Nelson and Pelcovits. (4) We may repeat their derivation of the equation of 
state, given in Section V of Ref. 4, with Eq. (5.2) unchanged and (5.3) 
missing its second term. The ensuing modifications of Eqs. (5.7)-(5.10) are 
such as to yield precisely the same result as in (5.11) and (5.17) for the 
physical equation of state, 

( n - (n- 1)/2(n-2) 
M ( t , h ) = [ l  + ~ - 2 ) T ( h ' / 2 - 1 ) l  (2.20) 

2.3. The Recursion Relations of Nelson and Pelcovits 

Let us discuss briefly the relationship of the above symmetrical renor- 
malization to the nonlinear scheme of Ref. 4. The Hamiltonian in the 
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presence of h was represented in the form 

H = H 0 + H, (2.21) 

, , 0  = + 

H t = f d a x ( - ~ T ) [ ( ~ r .  Osr)2+~h~r4 ] (2.22b) 

and the renormalization of the coefficients in (2.22a) due to the perturba- 
tion (2.22b) calculated to linear order in T and to all orders in h. The spin 
rescaling ~: was defined by the relation 

/Y' h (2.23) 
T' - ~ = T  

and became 3 

( n -  1) Tlnb l (2.24) 
= b d 1 4~r 1 + h/A 2 

The differential recursion relations turn out to be (4) 

_ (n - 2)  ~r2(l)  
dT eT(l)  + (2.25) 
dl 2~r 1 +/7(l) 

( n - 3 )  h( l )T( l )  
d/7 _ 2 f , ( l )  + (2 .26)  
dl 4er 1 +/7(1) 

where/7(l) is a dimensionless variable and is equal to h/A 2. 
The question naturally arises as to the renormalization of the other 

dimension two (relevant) operators occurring in H, for instance, the terms 
in H l, Eq. (2.22b). Since their coefficients can be shown to obey different 
recursion relations, which only agree with (2.25) and (2.26) to lowest order 
in h(l), the consistency of the procedure is not obvious a priori. In order to 
verify this consistency, we write the full renormalized Hamiltonian in the 
form 

H ' = H ' +  Hi' r 

-- 1 2 l r=fddx-- i - i :  

_ O2 In(1 - rra)} 

+ Qr.l__~ --~o"rr) 2 ] +~/7' (1 - -  7/'2) 1/2 

(2.27) 

( 2 . 28a )  
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+ ' ' "  ]rr 2~ + O(34) 1 (2.28b) 
) 

2 . . -  

where T' and/7' are the solutions of (2.25) and (2.26). The correction Hi'r, 
Eq. (2.28b) is of dimension four or higher, since it vanishes for h = 0, and 
the linear contribution to H '  is correctly given by (2.28a) with T' satisfying 
Eq. (2.18). The terms in (2.28b) are clearly irrelevant, but in contrast to 
(2.17c), there are an infinite number of terms at each order in h. A different 
but equally valid division of terms in (2.30) would be obtained, for 
example, if T' and/7' were calculated from the renormalization of H 1, Eq. 
(2.22b), rather than the renormalization of H 0, but once again the differ- 
ence would only involve irrelevant operators. 

3. ANISOTROPIC MODELS 

In this section we discuss quadratic symmetry breaking represented by 
the Hamiltonian 3 

where % is the first component 3 of the vector yr. In the present case we 
know from physical arguments that for g > 0 the system crosses over to a 
fixed point characteristic of the O(n - l) symmetry, whereas for g < 0 the 
system becomes Ising-like. It is not sufficient to discuss the renormalized 
Hamiltonian for small g' (as we did for h in Section 2.2), if we wish to 
describe the full crossover. We shall therefore introduce a nonliner renor- 
malization which is the same as that of Nelson and Pelcovits, (4) but we 
shall discuss the systematics of the renormalization in order to verify the 
consistency of the procedure. Let us represent the vector field ~r as (%, ~7), 
where ~7 has (n - 2) components. Then (3.1) may be written as 3 

H[ = f d 'x{ (-1)[O).'Y)2 + (O. l)2 + 

+ (1 - ~72- ~r2)-'(r7 �9 O,~ + %0,%) 2] 

- �89 - r7 2 - ~r2)} (3.2) 

in terms of which the thermal average of an operator X[rT,%] is given by 

-- Z - ' r D f f  f D%X[~,rr,]exp{H['~,%] } (3.3) (x) 
j , . t  - -  - -  
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where Z is the partition function and | ~ denotes functional integration. 
For g -- 0 the renormalization of (3.2) must be identical to that of (2.3), i.e., 
one can verify that the coefficients of (~rT) 2, (~rq)  2, (~.  3~7) 2, 2(~7- ap~) 
(~hS~h), etc., are the same at each stage, up to terms containing four or 
more derivatives. For g > 0, we represent H '  in the following form: 

U'[~,~r,] = H ' +  ni~ (3.4) 

+ (, - ~- ~,~)-'(~ 0.~ +.,0~,) ~] 

l oo 

m =2 

m = l  k = 0  

(3.5a) 

oo co 

+ E E [ cm~(g)(r 0~)(~0~,)+ Dm~(~)(~,0~,) 2] 
m = 0 k = 0  

• ~t~,~2~ + o(0~)} (3.5b) 

The functions T', ~ ,  g', and ff~ are determined (4) by studying the 
2 ~ 2 2 2 renormalization of (0r ( ~ q ) ,  wl, and @7. ~ # )  , respectively, and lead 

to nonlinear recursion relations of the form 

T'(g) b-~T[l+ T [(n-3)(l+g/A2)+l] ] 
= - -  l n b  (3.6) 2~r 1 + g/A 2 

[ T l lnbl  (3.7) g'(g)--b2g 1+ 2~ l+g/A 2 

The renormalized coefficients of terms such as (~h0~eq) 2, r 3~r etc., 
are not equal to T'(g), but the difference is made up by the coefficients in 
the added term (3.5b). The coefficients of (Ou~)2,(~ .0r 2, and #2,,(~. 
~F)2 (m = 1 . . . . .  oo) are identical, on the other hand, and equal to T'(g). 

~ t  
The important point to note about Hit, Eq. (3.5b), is that it vanishes in 

the limit g--~ 0, and remains bounded for large 8. Indeed, the coefficients 
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Am(g) can be calculated (9) and are equal to 

Am(g) = re_if  g/(A2 + g)]m (3.8) 

while inspection of the perturbation theory (9) shows that the coefficients B, --, 
C, and D in (3.5b) are bounded. Moreover, it is also clear that Hit vanishes 
for 7r I = 0. 

As discussed by Nelson and Pelcovits, (4) the recursion relations (3.6) 
and (3.7) display a crossover between the O(n) fixed point 

g* = 0, T* = 2~re/(n - 2) (3.9) 

and the O(n - 1) fixed point 

g* = oe, T* = 2~rel(n - 3) (3.10) 

Let us verify that the full Hamiltonian (3.4)-(3.5) yields the correct 
physics in both limits. For g' 4 0  the discussion of Section 2.1 applies and 
the terms in (3.5b) containing two or fewer derivatives must vanish identi- 
cally. The crossover exponent 

Xg = 2 - 2e / (n  - 2) (3.11) 

found by Nelson and Pelcovits (4) depends on the terms of the form grr 2 in 
(3.5a), and has no contribution from (3.5b), since the latter involves terms 
with higher powers of g [see Eq. (3.8)]. 

When the transformation (3.7) is iterated repeatedly, the coefficient g' 
grows and eventually reaches the fixed point (3.10). In that limit the 
procedure of Ref. 4 may be justified by the following argument: for large g 
the quantity ur  2 in (3.5a) grows without bounds while all the other terms in 
(3.5a) and (3.5b) remain bounded, for fixed ~r I and ~. [The boundedness of 
(3.5b) is an important element in the argument.] Therefore, any thermal 
average such as (3.3) can be simplified, (12) i.e., 

( X ) =  z - ' f D ~ X [ ~ , ~ l = O ] e x p { H [ ~ , ~ t = O ] )  (3.12) 

since the configurations in (3.4) with ~r I @ 0 have very large energy. It 
follows that the effective Hamiltonian is 

{[ 1 ] [  (~)2+(1-~72)-1(~'0~)2] 
HI~]  = f  dax 2 T ( g  = oo) 

- �89 - ,~2) + O(D~)) (3.13) 

i.e., it is precisely the Hamiltonian for an O(n - 1) system. 
For intermediate values of g, we can represent H '  in terms of the 

parameters g'(g) and T'(g)  given by (3.6)-(3.7), though the precise --, 
breakup in (3.4)-(3.5) is rather arbitrary. This is because although Hit 
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m 

contains only irrelevant operators, H '  contains both relevant and irrele- 
vant terms. By including irrelevant operators in H '  the latter is made to 
have the same form as the starting Hamiltonian H. This procedure allows 
us to define renormalized values of T and g unambiguously for intermedi- 
ate values of g. 

Let us discuss briefly the case g < 0, when a crossover to Ising-like 
behavior is expected. The representation (3.2) is still an acceptable form for 
the renormalization group for small I gl. Now, however, as I gl grows, 
configurations in (3.4) with 7r~ v ~ 0 become more and more favored so the 
contribution of the correction (3.5) cannot be neglected. Since we expect (lO 
the critical temperature to be of order T c-~[ - lnl gl], the small- T perturba- 
tion theory is no longer valid, and an accurate description of the crossover 
is beyond the scope of the present methods. 
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APPENDIX: EVALUATION OF DIAGRAMS WITH 
DERIVATIVE COUPLING 

Pelcovits (13) has discussed the evaluation of Feynmann graphs for the 
4-point interaction (~r. O~r) 2 with derivative coupling. It turns out, how- 
ever, that his approach gives incorrect results in the presence of h or g. In 
order to illustrate this point, we consider the second and fourth diagrams in 
Fig. lb. Since these diagrams involve fewer than two derivatives on the 
external legs, the contributions of order ~2 have to be obtained in a rather 
nontrivial way. If p and p + q denote the momenta on the two internal 
propagators, we have 

A/b < [Pl < A 

A/b < [p + q[ < A 
(A.I) 

Hence, the p integration appearing in the computation of the diagrams has 
to be done in an elliptical shell. For h = 0 and g = 0, this elliptical 
q-dependent boundary of p does not contribute to the q2 terms, as can be 
seen from the following arguments: From dimensional analysis, it is obvi- 
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ous that the integrals appearing in the evaluation of the diagrams are 

q2 s /p2 (A.2a) 

s q) dZp/p 2 (A.2b) 

s  (A.2c) 

where "el" denotes the elliptical integration domain which depends on q via 
Eq. (A.1). However, to obtain terms proportional to q2, it is clear that the 
limits of integration in (A.2a) can be considered independent of q. To show 
that the integrals (A.2b) and (A.2c) also do not contribute to the q2 term, 
let us define 

p' = p + r (A.2d) 

where p' lies in a spherical shell A/b < IP'I < A. The integral (A.2b) 
becomes 

fsph (p' -- r ) ' q  d -~7-- r )  i 2p,= 0 (A.2b') 

since it can be viewed as representing an electric field inside a charged 
hollow cylinder. The change of variable in (A.2d) implies that (A.2c) will 
also be independent of q. 

For h v a 0, g 4 = 0, the evaluation of the diagrams also involves the 
following integrals [in addition to those given by (A.2)]: 

hq2 f d2p/p 4 (A.3a) 

h f (q. p) d2p/p 4 (a.3b) 

h f d~p/p 2 (A.3c) 

The analogy with electrostatics no longer exists in this case, and hence the 
contribution to q2-dependent terms from (A.3b) and (A.3c) is nonzero. 
However, it is not easy to calculate these integrals under the constraint 
(A.1). Instead, if we redistribute the momenta on the propagators to 
p - q/2 and p + q/2, (A.1) reduces to 

A/b < IP - q/21 < A (a.4) 
A/b < IP + q/Z1 < A 

The above relation is invariant under p---> - p .  Hence integrals of the kind 
(A.3b.) are always zero. Also, the q2 contribution from (A.3c) can be easily 
obtained using the constraint (A.4). (9) 
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